Resilience Changes in a River Basin using long-term streamflow data

Laura Elisa Garza-Díaz University of California Davis legarza@ucdavis.edu

As resilient social-ecological systems

As resilient social-ecological systems Anthropogenic se and modify res The capacity to absorb, Resilience adapt, and transform Society **Nature** "Ecological Resilience is the magnitude of Povide ecosystem services disturbance a system can tolerate before it changes into an alternative regime" (Holling, 1974)

As resilient social-ecological systems Anthropogenic **RESEARCH QUESTIONS** How much perturbation a river basin can absorb before it experiences a se and modify reso regime shift? The capacity to absorb, Resilience adapt, and transform Society **Nature** Povide ecosystem services

As resilient social-ecological systems

RESEARCH QUESTIONS
How much perturbation
a river basin can absorb
before it experiences a

The capacity to absorb, adapt, and transform

If it does,

regime shift?

Can we identify when it happened?

OBJECTIVE

Identify regime shifts, and changes in the stability landscape of a river basin using long-term streamflow data through an ecological resilience assessment

Rio Conchos basin El Paso Main control point Control points Reservoirs Irrigation Districts Towns and cities Rivers Ojinaga Madero

Case Study The Rio Conchos

The Rio Conchos Basin is one of the most important areas of northern Mexico and it is a vital tributary of the transboundary Rio Grande-Bravo basin shared between the U.S. and Mexico

Data: 7 Control Points

Period of 110 years (1900-2010)

Timestep: Monthly

Results: at Ojinaga control point

Ecological Resilience Assessment

Output

Input Data: Regulated streamflow time series from 1900-2010

1. Streamflow Naturalization

Water Balance

$$Q_t^{\text{nat}} = O_t - I_t + \Delta S_t$$

Naturalized Streamflow timeseries

2. Hydrologic Assessment

Streamflow Drought Index (SDI)

Time-window: 120 months

Naturalized and Regulated SDI values

3. Regime Shift Assessment

- Fisher Information (FI) (Ahmad et al., 2016)
- Regime Shift Analysis

Sustainable Regime Hypothesis Mann-Kendall non-parametric test (CI 95%) Probability Density Functions

Regime Shifts

Stability Landscapes

How do we determine regime shifts?

Sustainable Regime Hypothesis (Cabezas and Fath, 2002)

- (1) A system is dynamic when a non zero Fisher Index
- (FI) is constant
- (2) A steady decrease in FI indicates warning of regime shift
- (3) A steady increase in FI indicates the system is becoming organized and stable
- (4) A sharp change in FI denotes a regime shift*
 *FI values are greater than +-2 SDV from the mean of FI (Gonzalez-Mejía et al., 2012).

Sustainable Regime Hypothesis

(2) A steady decrease in FI indicates warning of regime shift

Sustainable Regime Hypothesis

(4) A sharp change in FI denotes a regime shift*

*FI values are greater than +-2 SDV from the mean of FI (Gonzalez-Mejía et al., 2012).

Changes in Stability Landscape

Naturalized System

Regulated System

Conclusion

A resilient river basin system can cope with shocks and perturbations until its sustainable carrying capacity allows it.

- 1) A regime shift occurred in the Rio Conchos Basin by 1948.
- 2) Four perturbations are identified as the causes of a regime shift:
- 3) Changes in resilience and are visible using stability landscapes

Closing knowledge gaps

Ecological resilience assessments have long remained mostly conceptual in hydrology; thus, there is a need to use quantitative methods for estimating resilience and understand the effects of rapid global change river basins

Conclusion 13/15

Resilience Changes in a River Basin using long-term streamflow data

Laura Elisa Garza-Díaz University of California Davis legarza@ucdavis.edu

How do we determine a regime shifts?

Sustainable Regime Hypothesis (Cabezas and Fath, 2002)

- (1) A system is dynamic when a non zero Fisher Index
- (FI) is constant
- (2) A steady decrease in FI indicates warning of regime shift
- (3) A steady increase in FI indicates the system is becoming organized and stable
- (4) A sharp change in FI denotes a regime shift*

 *FI values are greater than +-2 SDV from the mean of FI (Gonzalez-Mejía et al., 2012).

Methodology 10/15