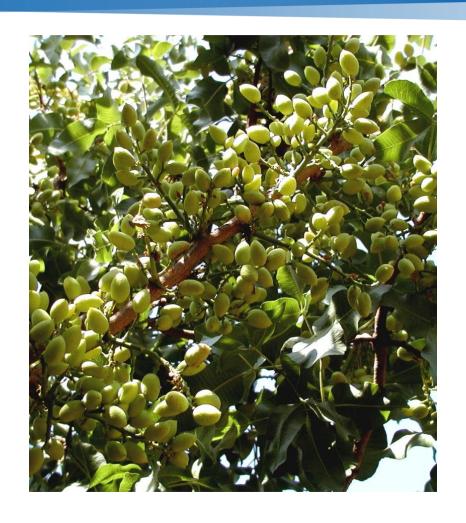
Principles of Nutrient Management in Orchards


Mae Culumber **UCCE Nut Crop Advisor – Fresno County**

Young Orchard Irrigation and Nutrient Management Workshop 2025

Nutrient Management Planning

- Increase yields
- Reduce production costs
- Prevent surface and groundwater contamination

14 Essential Elements for tree crops

Macronutrients

- Nitrogen
- Potassium
- Phosphorous
- Magnesium
- Calcium
- Sulfur

Micronutrients

- Zinc
- Boron
- Iron
- Manganese
- Copper
- Chloride
- Nickel
- Molybdenum

Factors influencing nutrient availability to orchard crops:

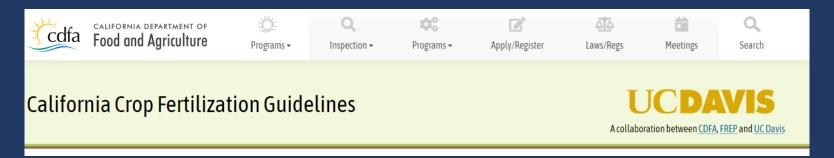
Soil texture and mineral composition

Nutrient interactions

Soil organic matter

Soil pH

Irrigation water chemistry (nitrates, salts, etc.)


Fertilizer form and application method

Irrigation management

Successful nutrient management requires knowledge of:

- Crop requirements
- Crop uptake patterns
- Nutrient budgeting
- Soil and tissue nutrient analyses
- Proper irrigation management

N,P,K demand per 1000 lbs of crop:

	N	P_2O_5	K ₂ O
Almonds (kernels)	68	18-20	85-95
Pistachio	28	7	29
Walnut	15	5	7.5
Manzanillo Olive	4	2	8
Peach and Nectarine	1-1.5	0.5	2-2.5

Nitrogen concentrations in harvested plant parts – Update 02/2024

Includes updated values for

- Cotton Acala
- Cotton Pima
- Kiwi
- Lemons
- Mandarins
- Nectarines

- Oranges Navel
- Oranges Valencia
- Sorghum Grain
- Perennial parts of cherry and citrus trees

Daniel Geisseler February 28, 2024 Average N concentrations and observed variability from scientific research and on farm reporting

Source	Sites		Years samp	oled	Observations
	Location	n	Years	n	
Variety: Nonpareil					
Brown et al., 2012; Brown, 2013	California	1	2008	1	4
Brown et al., 2012; Brown, 2013	California	4	2009	1	7
Brown et al., 2012; Brown, 2013	California	5	2010	1	8
Brown et al., 2012; Brown, 2013	California	1	2011	1	4
Brown et al., 2012; Brown, 2013	California	1	2012	1	4
Variety: Monterey					
Brown et al., 2012	California	1	2011	1	4
Overall		5		5	31

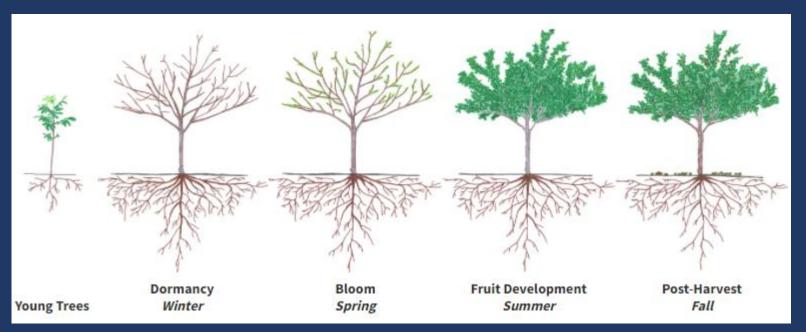
http://geisseler.ucdavis.edu/Geisseler_Report_U2_2024_02_28.pdf

Nitrogen accumulation in permanent tissues of trees

- Deciduous trees cycle nitrogen (N) and other nutrients by remobilizing them from the senescing leaves into woody tissue and by storing a portion of accumulated nutrients in perennial organs
- ~10-40 lbs/ac each year

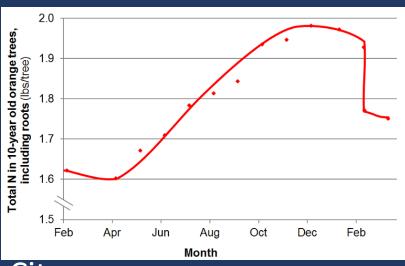
N needs for vegetative growth

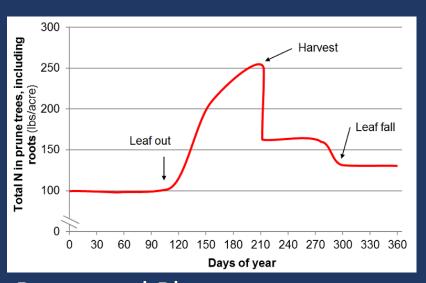
For 2nd leaf or older:

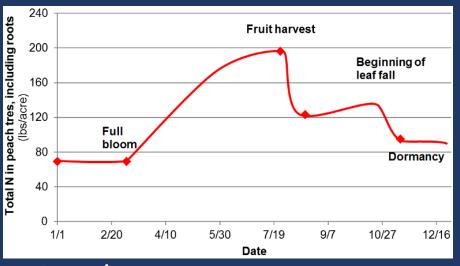

- N needs around 25-30 pounds for vegetative growth
- Needs to be added to crop requirements if yielding under 2000 lbs/acre

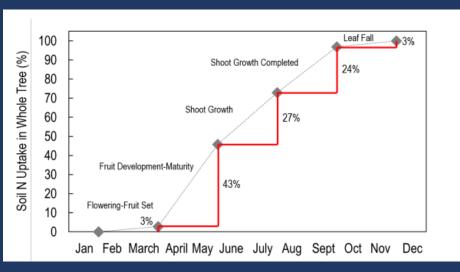
Successful nutrient management requires knowledge of :

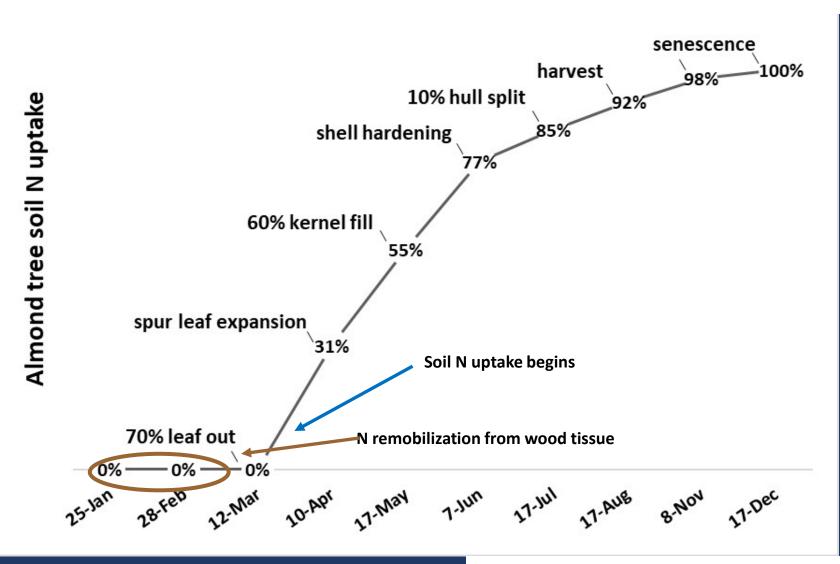
- Crop requirements
- Crop uptake patterns
- Nutrient budgeting
- Soil and tissue nutrient analyses
- Proper irrigation management

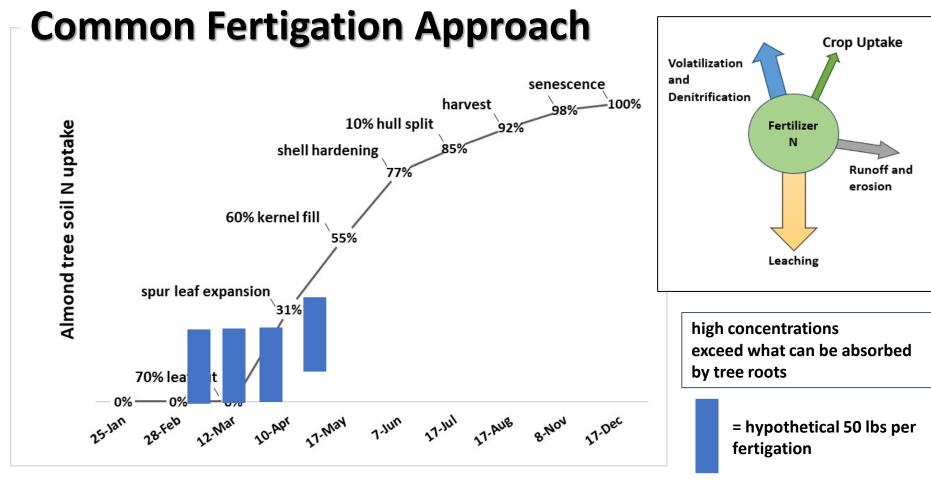

When are nutrients needed?


- Deciduous trees store nutrient in canopy branches, trunk, and roots over winter and redistribute during growth in the spring
- Uptake only occurs during active growth beginning after leaf out, highest from onset of shoot growth to late stages of fruit development
- Nutrients are best applied when the trees can use it

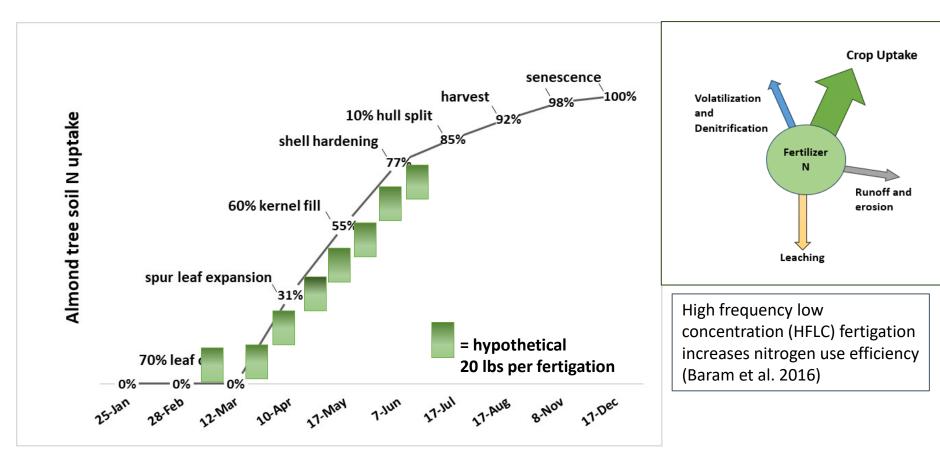

Crop Nitrogen Uptake and Partitioning






• Peach (Saenz et al. 1997)

• Prune and Plum (Weinbaum et al. 1994) • Sweet Cherries (Brown et al. 2023)


Almond N uptake through the season

Too early and too much in a single set increases leaching potential

Match N applications with tree uptake

By 101–126 DAFB, kernels have gained 60–70% of their total weight, then rate of fruit N accumulation decreases (Muhammad et al. 2020)

Successful nutrient management requires knowledge of:

- Crop requirements
- Crop uptake patterns
- Nutrient budgeting
- Soil and tissue nutrient analyses
- Proper irrigation management

Initial N budget and adjustment

- Estimate demand:
 - Last year's yield, this year's estimated yield, tree age
 - account for N inputs (fertilizer, water, soil, amendments, cover crops)

Adjustments:

Revised yield estimate and leaf sampling

Source of N in irrigation water

Nitrate-nitrogen (NO³-N) in the water:

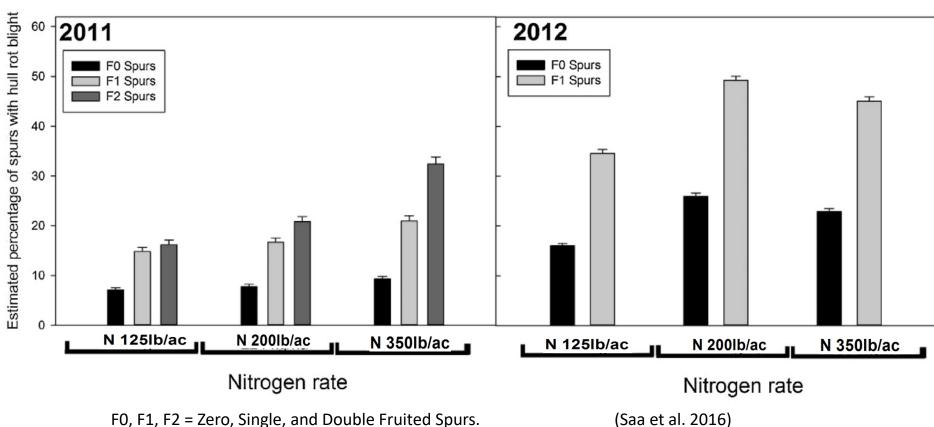
N (lbs/acre inch) = NO^3 -N concentration (ppm) *0.23

Acre inches applied	3 PPM	5 PPM	10 PPM	15 PPM
1	0.7	1.15	2.3	3.45
6	4.1	6.9	13.8	20.7
12	8.3	13.8	27.6	41.4
24	16.6	27.6	55.6	82.8
48	33.2	55.2	112	166

Example: 36 inches of 10 ppm water applied through the season = 82.8 lbs/season, @80% efficiency 66 lbs/season UC UNIVERSITY OF CALIF

Example N budget for Almond

N source	N budget for 2500 lb Cropload
Crop N removed	2.5*68= 170
Vegetative growth N	30
Total N requirement	200
N credits: 66 lbs N irrigation water @ 80% NUE	-66
Net Crop N requirement after credits	134
Total fertilizer N for the season to apply (80% NUE)	(147/0.80) =168


Partition 195 lb/ac rate N fertigation through growth stages

Crop development stage	~days after full bloom (DAFB)	~month in growing season	% of season N applied	# fertig.	Lbs per fertigat ion
Stage 1: (70% leaf expansion through fruit enlargement)	30-55	Mid-March to Late-April	30%	4	15
Stage 2: (Shell hardening and kernel fill)	55-110	Late-April to Mid- June	55%	5	21
Stage 3: (Initiation of hull split to 3 weeks postharvest)	110-190	Mid-June to late- September	15%	2	15

BE CONSERVATIVE: Many little feeds are better than slugs Prevents over fertilizing trees and reduces leaching potential

Problems with excess N

Almond hull rot incidence with increased N:

F0, F1, F2 = Zero, Single, and Double Fruited Spurs.

Concentrations above adequate levels may not increase yield, but can increase fertilizer costs and hull rot

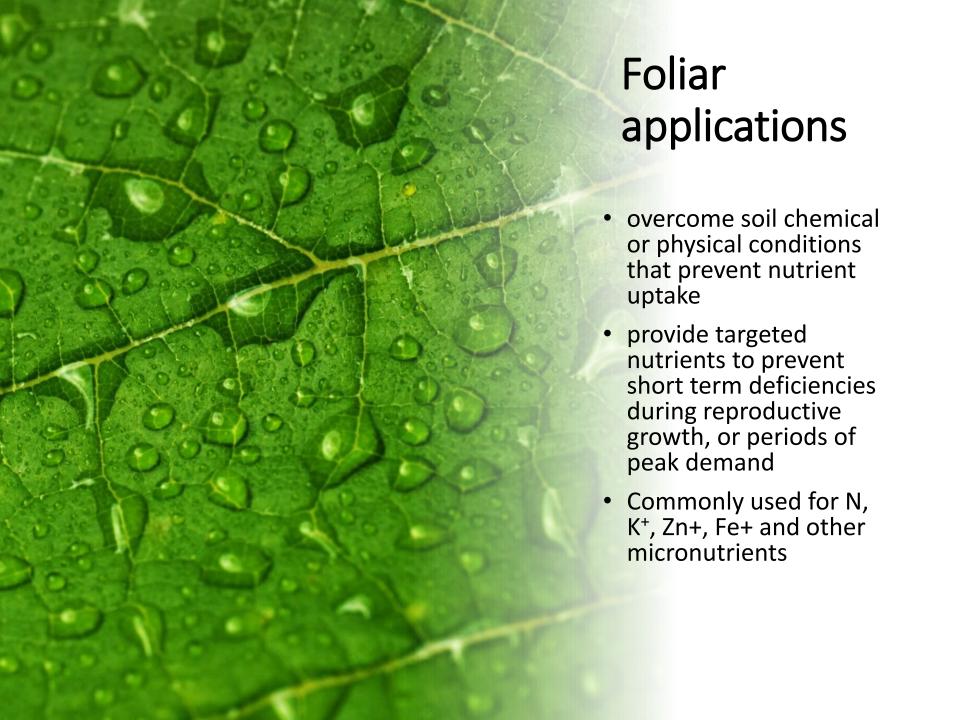
Potential Consequences of Large Applications

- 50 lbs N /ac shanked into soil followed by flood mid-April, scorched mature almond canopy
- Too much in a single shot can burn tree roots and leaves, and cause nut drop

Nutrient mobility in soil

- Zn, Cu, and Fe have restricted solubility and movement
- Soils that limit root growth can cause Zn, Fe, Cu deficiencies
- Nutrients and roots must be in the same place
- Root exploration and 'soil health' is critical

Soil fertility guidelines for potassium (K+)


Fertility Level	Extractable K (ppm)
Very Low	< 75
Low	75 -150
Medium	150 – 250
High	250 -800
Very High	> 800

- K can undergo exchange reactions with other nutrients, be fixed to clay minerals, or leached with irrigation water
- Ammonium acetate test considered best indication of available K⁺
- Levels below 150 ppm are considered low and trees are likely to respond to fertilization

K fertilization through almond growth stages Partition 200 lb K₂O/ac rate

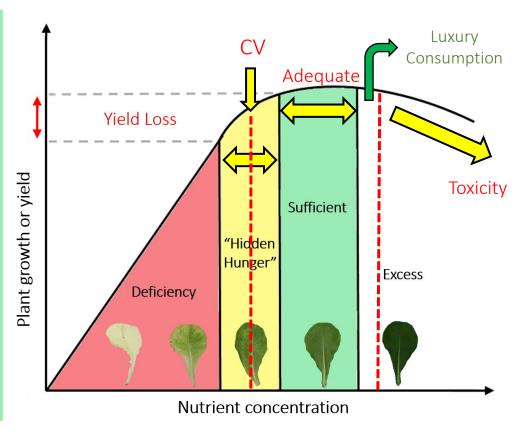
Crop development stage	month in growing season	% of season N applied	lbs per acre (K ₂ O)
Stage 1: (70% leaf expansion	Mid-March to	20%	40 (KNO ₃ , KTS,
through fruit enlargement)	Late-April		K ₂ SO ₄ through
			drip)
Stage 2: (Shell hardening and	Late-April to	30%	60 (through
kernel fill)	Mid- June		drip or applied
			as foliar, 5-10
			lb/application)
Post Harvest/dormancy	Mid-June to	50%	100 (banded
	February		SOP needs
			rainfall or
			irrigation)

Sandy soils with lower exchange capacities need multiple smaller applications throughout the year

Zinc and Boron

- Both absorbed through leaves, stored overwinter, and moved to the buds for use at almond bloom
- Apply 1-2 lbs. solubor/ac in 100 gallons and 5 lbs zinc sulfate in 100 gallons in October
- Foliar zinc also effective at early leaf out and boron pre-bloom
- To correct a very B deficient orchard, a combination of foliar, drip, and soil applied B fertilizer may be needed.
- Tank mixes of Zn and B: Acidify the spray solution* to pH 5 before adding zinc then B

Online Tools:


- CropManage https://cropmanage.ucanr.edu/
- CDFA FREP website for orchard crops <u>https://www.cdfa.ca.gov/is/ffldrs/frep/FertilizationGuidelines/</u>
- UC Davis Fruits and Nuts website <u>https://fruitsandnuts.ucdavis.edu/</u>

Successful nutrient management requires knowledge of:

- Crop requirements
- Crop uptake patterns
- Nutrient budgeting
- Soil and tissue nutrient analyses
- Proper irrigation management

Tissue analyses: show hidden toxicities and deficiencies when visible symptoms are not present

		WARNING
Element	Critical value	Adequate range
nitrogen (N)	1.8%	2.2–2.5%
phosphorus (P)	0.14%	0.14-0.17%
potassium (K)	1.6%	1.8-2.2%
calcium (Ca)	2.0%	2.1–4.0%
magnesium (Mg)	0.45%	0.5-1.2%
sodium (Na)	-	-
chlorine (CI)	-	0.1-0.3%
manganese (Mn)	30 ppm	30-80 ppm
boron (B)	90 ppm	150-250 ppm
zinc (Zn)	7 ppm	10-15 ppm
copper (Cu)	4 ppm	6–10 ppm

Slide: Doug Amaral

Plant Tissue Sampling in Orchards and Vineyards

Patricia Lazicki and Daniel Geisseler

Orchard Leaf Sampling

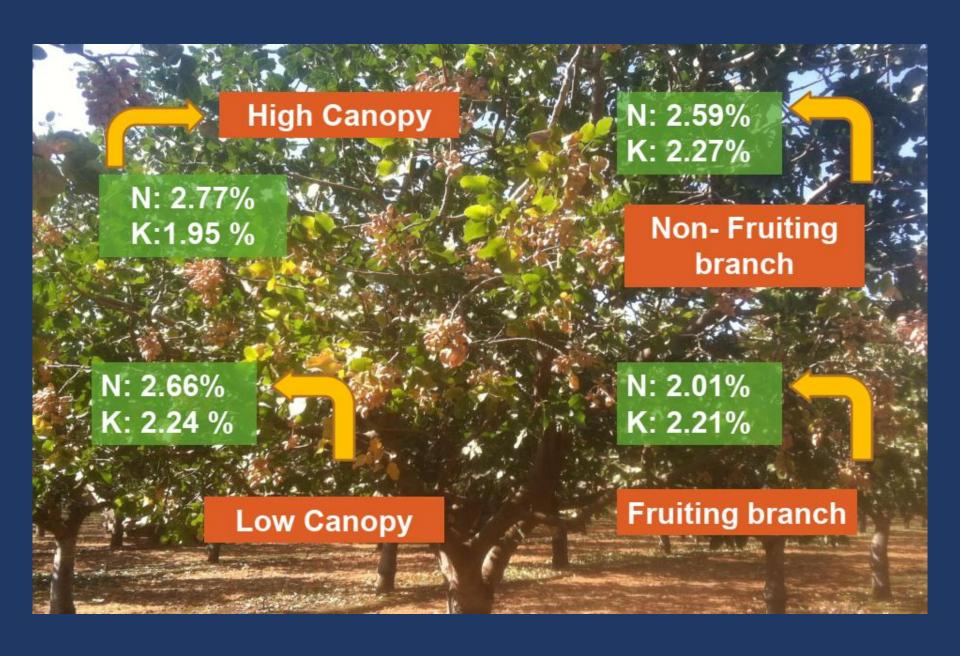

Table 1: Sampling procedure for California orchard and vineyard crop	Table '	 Sampling 	procedure f	or California	orchard	and	vineyard	crop
--	---------	------------------------------	-------------	---------------	---------	-----	----------	------

Table 1: Sa	ampling proc	edure for California orchard	and vineyar	d crops	
Plant	Sampling date	Plant part	Plants to sample	Total parts needed	Notes
Almond (spring)	36-48 days after full bloom	Leaves from non-fruiting, well-exposed spurs 5-7 feet above the ground	18-28 trees (>30 yards apart)	Leaves from 5-8 spurs per tree	Tested with Nonpareil almonds. Predicts all nutrients in July leaves (traditional method uses the same sampling protocol). Boron status better correlated with hulls of mature almonds at harvest.
Avocado	Aug-Oct	Terminal leaves from non- flushing, non-fruiting spring flush shoots (5-7 months old), 3-5 feet above the ground	>10 trees per block	4 leaves per tree (one from each quadrant)	Avocado leaf testing methods adapted from citrus. Currently not very reliable. Combine with tree vigor observations.
Citrus	Sept-Oct	Terminal leaves from non- flushing, non-fruiting spring flush shoots (5-7 months old), 3-5 feet above the ground	>10 trees per block	4 leaves per tree (one from each quadrant)	Recommended block size 5-10 acres
Grapevine	Full bloom	Petioles of leaves opposite flower clusters	25-50 vines	One or two petioles per vine	Petiole nitrate varies widely between rootstocks and varieties. Analyses are best used in combination with observations of tree vigor.
Olive	July	Mature mid-shoot leaves from non-fruiting, current- season shoots	30-40 trees	80-100 leaves	Deficiencies uncommon; N may not need to be tested annually if normally sufficient
Peach and Nectarine	Jun-Jul	Mid-shoot leaves from moderately vigorous current-season shoots	30-50 trees	60-100 leaves	
Pistachio (spring)	30-45 days after full bloom	Leaves from non-fruiting, exposed branches 6-7 feet from the ground	At least 18 trees, (>25 yards apart)	10 leaves per tree	Used to predict summer N and K levels. Pistachios are susceptible to K deficiency; samples may need to be taken every year.
Pistachio (summer)	Jul-Aug	Fully expanded sub- terminal leaflets from non- fruiting branches, ~6 feet from the ground	10- 20 trees	4-10 leaves per tree	Traditional sampling time for all nutrients. Spring analyses can predict summer N and K.
Prune and plum	July	Fully expanded leaves from non-fruiting spurs 5-7 feet above the ground	>25 trees per block	One or two leaves per tree	Recommended maximum block size 40 acres. Prunes are susceptible to K deficiency; samples may need to be taken every year.
Walnut	Jun-Jul	Terminal leaflets from fully expanded spur leaves, 5-8 feet above the ground,	5-10 trees	50 leaves	

- Crop
- Sampling date
- Plant part to sample
- Quantity needed

Sources: Almond [7,13], avocado [3,8], citrus [8], grapevine [6], olive [9], peach and nectarine [9], pistachio [2], prune and plum [11], walnut [1]

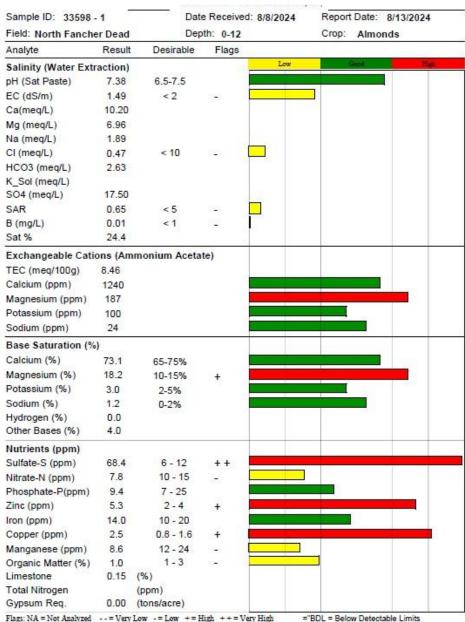
from around the tree

Leaf Sample Critical Values - Mature Almond

	N %	P %	K %	Boron (Hull) ppm	Zn ppm
Adequate	2.2 – 2.7	0.10 - 0.3	>1.4	80-150	>15
Excessive	>2.7		>1.6 - 1.8	>200	

- Early season (43 days post full bloom) 3.5% N
- Mid-summer analysis important to make determinations about end of season fertility management, and next seasons nutrient management plan
- Can also help determine if foliar applications are necessary to rapidly correct deficiencies

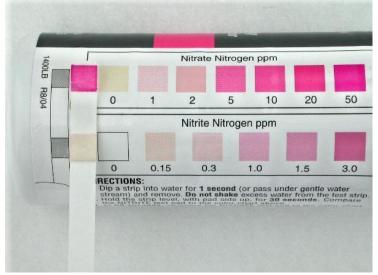
Soil Analyses for Nutrient Management Planning


- Determine what portion of the nutrient pool is plant-available, but don't generally measure the quantity of nutrients available to a crop
- Important to use a combination of both soil, tissue, and water analyses to estimate fertility needs

Sample timing

- Soils should be analyzed often enough to recognize potential nutrient management issues before they adversely impact plant growth
- Nitrogen management: annual in spring or every 3 years minimum
- Salinity reclamation: annual in fall

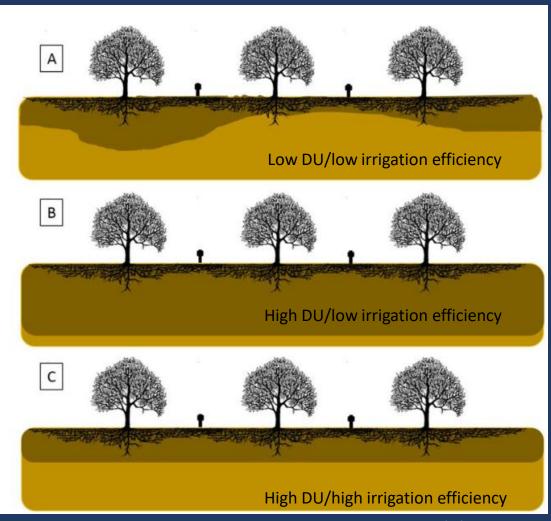
R105GRAPH


- Submit soil and water samples to a certified ag lab
- Different labs have different formats. Use one lab with consistent, quality results and a format you understand

Page 1 of 2

Nitrate test strips

- Soil nitrate levels always in flux due to inputs from fertilizers, mineralization of soil organic matter and crop residues, and irrigation water
- Soil nitrate quick test provides estimate of soil nitrate availability to guide decisions just prior to fertilization


https://blogs.cdfa.ca.gov/FREP/index.php/nitrate-quick-test/

Successful nutrient management requires knowledge of:

- Crop requirements
- Crop uptake patterns
- Nutrient budgeting
- Soil and tissue nutrient analyses
- Proper irrigation management

Distribution Uniformity & Efficiency

- A. areas that receive more or less water, receive more or less fertilizer
- B. Good system DU with over irrigation will lead to nutrient leaching across the field
- C. Good DU with good irrigation scheduling = even nutrient application and retention in the rootzone

Lightle, D. 2019

Fresno County - Early Spring

- Increased water
 availability in the early
 spring months following a
 wet winter often
 coincides with N
 application
- Increases loss of nutrients from the rootzone

Take home messages

- Effective nutrient management requires accurate accounting for crop and growth demand
- Treat each orchard separately each season: consider historical yield performance, previous season's tissue analysis, and overall canopy conditions
- Overapplying N will not increase yield, but can increase fertilizer costs and hull rot in almonds

Take home messages

- Re-estimate your N budget based on current season's leaf tissue analysis and changing yield estimates
- Foliar applications can help overcome deficiencies identified by leaf tissue analyses
 - Follow recommended rates, application method for the time of year, soil type etc.
- Efficient nutrient management requires proper irrigation scheduling with a well-maintained irrigation system

Thank you!

Mae Culumber cmculumber@ucanr.edu
559-259-1053